
Written By: Jared Watkins – jared (over at) jaredwatkins (do t) com
Last updated: 04102009

Traffic Shaping Under Linux For Voice Over IP (VOIP) With Asterisk PBX

INTRO: This guide will show how to use a combination of iptables (via fwbuilder) and ‘tc’ to
create a traffic shaping policy for a linux based router that is easy to understand and
maintain. This specific arrangement works well for me… your mileage may vary.

This approach uses two steps for shaping traffic to provide adequate bandwidth on a limited
speed link. Traffic is classified (mostly) by iptables through the graphical firewall manager
called Firewall Builder. Examples of individual rules for classifying traffic will also be given.
Once classified, traffic is sorted into a 4 layer structure where each layer has rules that
specify the minimum and maximum amount of bandwidth it is allowed to use. If setup
correctly each level will be able to ‘borrow’ bandwidth from the other levels to ensure
maximum throughput for all possible traffic in all situations.

A reminder that you can only shape what you transmit. This example will demonstrate
shaping the outgoing traffic on link with a max theoretical speed of 512k upload.

I will implement the following rules:

1:1 - Root Class Limits Max Upload to 460000 Kbit (90% of max)

1:10 – Voip Class includes IAX2, SIP, RTP, H323

Guaranteed Rate: 428000 Kbit
Max Rate: 428000 Kbit

1:20 Interactive Class includes ACK Packets, DNS, SSH, Telnet, DHCP, VPNs

Guaranteed Rate: 64000 Kbit
Max Rate: 460000 Kbit

1:30 Class Includes Imap, pop, smtp, http, rsync, slingbox

Guaranteed Rate: 128000 Kbit
Max Rate: 460000 Kbit

1:40 Bulk Class Includes Everything Not Specifically Classified

Guaranteed Rate: 38000 Kbit
Max Rate: 460000 Kbit

Normally the guaranteed rates should add up to the max upload speed of the root class. In
this case I am allowing the voip class to potentially use all but 32 Kbit in the case of
multiple calls. The remaining 32 Kbit will be spread across the other classes with priority
given to 1:20.

Note: If you want to shape the outgoing traffic of servers you are hosting you must create
objects that match on the correct source ports as the standard objects are matching on
destination ports.

Note: Values are in bits or Kbits and not Bytes!

http://www.jaredwatkins.com/
http://www.fwbuilder.org/

Written By: Jared Watkins – jared (over at) jaredwatkins (do t) com
Last updated: 04102009

Figure 1 is a screen shot from FW Builder showing how the classification rules are built in
the GUI.

Figure 2 shows some of these rules as written with iptables.

Figure 1

Figure 2

http://www.jaredwatkins.com/

Written By: Jared Watkins – jared (over at) jaredwatkins (do t) com
Last updated: 04102009

The following shell script implements the rules defined above in a series of tc commands.

#!/bin/sh

90% of download
DOWNLINK=8400

Dev should be the public interface you are ‘transmitting’ on
DEV=eth0

if ["$1" = "status"]
then
 clear
tc -s qdisc ls dev $DEV
 watch -n1 tc -s class ls dev $DEV
 exit
fi

clean existing down- and uplink qdiscs, hide errors
tc qdisc del dev $DEV root 2> /dev/null > /dev/null
tc qdisc del dev $DEV ingress 2> /dev/null > /dev/null

if ["$1" = "stop"]
then
 exit
fi

#install root HTB, point default traffic to 1:40
tc qdisc add dev $DEV root handle 1: htb default 40

#shape everything at 90% $UPLINK speed to prevent modem queing
tc class add dev $DEV parent 1: classid 1:1 htb rate 460Kbit burst 6k

#voip class 1:10 - iax, sip, rtp, h323
tc class add dev $DEV parent 1:1 classid 1:10 htb rate 428Kbit ceil 428Kbit burst 6k prio 1

#high prio class 1:20 - DNS, IPSEC, SSH, Telnet, openvpn, dhcp
tc class add dev $DEV parent 1:1 classid 1:20 htb rate 64Kbit ceil 460Kbit burst 6k prio 2

#bulk class 1:30 - imap, pop, smtp, http, rsync, sling
tc class add dev $DEV parent 1:1 classid 1:30 htb rate 128Kbit ceil 460Kbit burst 6k prio 3

#default class 1:40
tc class add dev $DEV parent 1:1 classid 1:40 htb rate 38Kbit ceil 460Kbit burst 6k prio 4

#all get Stochastic Fairness
tc qdisc add dev $DEV parent 1:10 handle 10: sfq perturb 10
tc qdisc add dev $DEV parent 1:20 handle 20: sfq perturb 10
tc qdisc add dev $DEV parent 1:30 handle 30: sfq perturb 10
tc qdisc add dev $DEV parent 1:40 handle 40: sfq perturb 10

These next few lines classify packets with specific TOS/port values set

Classifying by TOS seems to be more reliable than by port
Configure your Asterisk system to set a tos value of 0x18 to match!
tc filter add dev $DEV parent 1:0 protocol ip prio 10 u32 match ip tos 0x18 0xff flowid 1:10

#TOS Minimum Delay (ssh, NOT scp) in 1:20
tc filter add dev $DEV parent 1:0 protocol ip prio 20 u32 match ip tos 0x10 0xff flowid 1:20

#DNS in interactive class 1:20
tc filter add dev $DEV parent 1:0 protocol ip prio 21 u32 match ip sport 53 0xffff flowid 1:20
tc filter add dev $DEV parent 1:0 protocol ip prio 22 u32 match ip dport 53 0xffff flowid 1:20

#only give TCP ACK's higher priority if this connection is asymmetrical
#if [! $DOWNLINK = $UPLINK]
#then
#give TCP ACK's higher priority in 1:20
tc filter add dev $DEV parent 1: protocol ip prio 23 u32 \
 match ip protocol 6 0xff \
 match u8 0x05 0x0f at 0 \
 match u16 0x0000 0xffc0 at 2 \
 match u8 0x10 0xff at 33 \

http://www.jaredwatkins.com/

Written By: Jared Watkins – jared (over at) jaredwatkins (do t) com
Last updated: 04102009

 flowid 1:20
#fi

#ICMP (ip protocol 1) in the interactive class 1:20
tc filter add dev $DEV parent 1: protocol ip prio 25 u32 match ip protocol 1 0xff flowid 1:20

########## downlink #############
slow downloads down to somewhat less than the real speed to prevent
queuing at our ISP. Tune to see how high you can set it.
ISPs tend to have *huge* queues to make sure big downloads are fast

attach ingress policer:

tc qdisc add dev $DEV handle ffff: ingress

filter *everything* to it (0.0.0.0/0), drop everything that's
coming in too fast:
tc filter add dev $DEV parent ffff: protocol ip prio 100 u32 match ip src \
 0.0.0.0/0 police rate ${DOWNLINK}kbit burst 10k drop flowid :1

One of the tc rules matches on the TOS field of packets of interest for voip. To use this you
should configure your asterisk sip.conf file to use ‘tos=0x18’ or for asterisk >= 1.4
tos_sip=0x10 tos_audio=0x18 tos_video=0x18

To activate the shaping rules you simply run the script. To see a real time display of what’s
happening run with the ‘status’ parameter. Figure 3 shows an example of a fully saturated
link with one ULAW encoded VIOP call in progress.

Figure 3

http://www.jaredwatkins.com/

Written By: Jared Watkins – jared (over at) jaredwatkins (do t) com
Last updated: 04102009

Figure 4 shows the same setup but with 3 active calls.

Figure 4

http://www.jaredwatkins.com/

